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FOREWORD

This report was prepared by Monsanto Research Corporation,
Dayton, Ohio, on Air Force Contract Nrs. AF 33(657)-8193 and
AF 33(615)-1317, "Evaluation of Fuels and Lubricants," under
Project 3048, Task 304801. This study, Task 9, concerned the
shock tube investigation of the ignition characteristics of
the hydrogen-air fuel system, A later, extended program of re-
search included the effect of additives on the ignition in-
duction times of hydrogen-air mixtures and the characteristics
of hydrocarbon-air ignitions.

The research was sponsored by the Aero Propulsion Laboratory,
Fuels and Lubricants Branch, Research and Technology Division,
Wright-Patterson Air Force Base, Ohio, with Messrs. J. R, Fultz
and C. J. Johnson as project engineers. Technical monitors
were F. D. Stull, and R. R. Craig, Ramjet Component Branch,

Ramjet Engine Division of the Air Force Aero Propulsion Laboratory.

The work was performed during the period 1 April 1964 to
26 July 1965 at the Dayton Laboratory of Monsanto Research
Corporation. Mr. J. C. Harris was project leader. Dr. G. B.
Skinner, the principal investigator, was succeeded by Dr. A. D.
Snyder. J. L. Robertson and D. L. Zanders conducted the exper-
imental measurements. The assistance of R. G. 0lt and J. R.
Moon is gratefully acknowledged. The computational aid by
J. E. Sutherland and A. D. Dickinson is also appreciated.

This technical report was submitted by the authors August
1965 and has been reviewed and is approved.

fiths U Che it

ARTHUR V. CHURCHILL, Chief

Fuels, Lubrication and Hazards Branch
Support Technology Division

AF Aero Propulsion Laboratory
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Ignition induction times of hydrogen-air mixtures were
measured after the reflected wave inn a single-pulse shock tube
as a function of mixture ratio, absolute pressure and tempera-
ture. The data have been correlated by a nonlinear regression
program resulting in an equation for induction time as a function
of these variables. The results support earlier work at this
laboratory on argon-diluted hydrogen-oxygen experiments in that
at temperatures below 1100°K the ignition delays became very
long because of self-inhibition of the reaction through HO2

IS formation. The effects of added water vapor and nitric oxide on
the ignition characteristics of hydrogen-air mixtures were
studied. Both additives resulted in sensitization of the ignition
reaction. A detailed investigation of the nitric oxide catalysis
indicated that the maximum effect occurred at 0.5 mole percent
of additive, where the ignition delay was decreased by a factor

: of 100 and the ignition temperature by 200°K. Nitrogen dioxide

1} was found to be equally effective, but ammonia exhibited no

3 sensitizing action. The ignition induction times of 0.5 and 1.0

3 ‘ equivalence ratio mixtures of methane-, butane-, and octane-air

. mixtures were determined from 0.2 to 10 milliseconds at a re-

flected shock pressure of 60 psia. The data are presented both
in tabular and graphical form. All ignition delay data are dis-

1 ! cussed 1in light of related studies and potential kinetic mechanisms.

: . Recommendations for future work are presented.
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I. SUMMARY

The primary purpose of this work was to furnish ignition
induction times for undiluted hydrogen-air mixtures in +the low-
temperature region as design criteria for future ramje. develop-
ment. The ignition delay data were determined under the following
conditions: equivalence ratios of hydrogen-air mixtures of 0.50,

, - 0.75, and 1.00; pressures of 15, 30, 60, 100 and 130 psia; temper-
1. atures from 800-1100°K. The ignition delays were measured from

1 0.2 to 10 milliseconds. Correlation of the experimental data by
quantitative chemical kinetic calculations was beyond the scope

of this program. However, the data were examined by employing a
nonlinear regression program and found to fit the following

B N s i o i s Logine Lt

SRR

S equation:
F : = 2:32 % 1077 ¢155950/T , for temperature range 800-1100°K
2 (0.4)
p @
o where 1 is the induction time in milliseconds, T is the Kelvin
. temperature, p is the pressure in psia and ¢ is the equivalence
3 ratio. This equation applies only to hydrogen-air mixtures with

- fuel concentrations which are less than stoichiometric, and should
not be employed for hydrogen-rich mixtures.

: An extension of the original program included research to

. identify the effects on the ignition reaction of contaminants that

A may be found in different types of combustion facilities. This

study included the investigation of the effects of both water vapor

and nitric oxide on the ignition characteristics of the hydrogen-

) air mixtures. While both additives sensitized the reaction, it

3 was found that certain concentrations of nitric oxide in the

: hydrogen-air mixtures significantly catalyzed the reaction, re-
sulting in a dramatic reduction in ignition induction times. With
0.5 mole percent added nitric oxide, the resultant decrease in
induction time is two orders of magnitude or a factor of 100. At
constant induction time thils is equivalent to a decrease in ignition
temperature of 200°C. Similar behavior was observed on addition

: of nitrogen dioxide, while ammonia was found to be ineffective.

‘ The kinetic mechanism of this reaction is not fully understood.

At low temperature the formation of the stable H02 species repre-

sents a slow chain-breaking reaction in that the chain carrier,

e
WV G e s 1
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hydrogen atom, 1s removed according to:

5 + M - HO2 + M

It is felt that the addition of nitric oxide interferes with this
chain~breaking step by rapidly reacting with the HO2 and regen-

(1) H+ O

erating a chain carrier by either of two reactions:

(2) HO, + NO - OH + NO,, or

2

(3) HO2 + NO » HNO2 + 0
In ramjet applications involving low flight speed regimes and
the resulting low inlet temperatures, the chemical kinetic ignition
delay times are of such magnitude that the combustion process
becomes reaction rate limited rather than mixing limited. The
addition of small quantities of nitric oxide or nitrogen dioxide
to a hydrogen fueled ramjet could permit flights at a somewhat
lower Mach number,

Finally, a preliminary examination was conducted of the
ignition characteristics of hydrocarbon gases in air. Ignition
delay data were determined for methane, butane and octane at
equivalence ratios in air of 0.50 and 1.00 and at a pressure of
50 psia. The ignition induction times increased in the order
octane < butane < methane. The effect of a change in mixture
ratio on the ignition characteristics was very minor, indicating
that this may not be a significant variable in the case of hydro-
carbons. The data are compared with nublished results of related
studies.
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II. INTRODUCTION

The initial objective of this research was to measure the
ignition-induction times of several hydrogen-air mixtures after
the reflected wave in a single-pulse shock tube under known
pressure conditions from 15 to 130 psla and temperatures from
800 to 1100°K.

PRTRR et

At higher temperatures, 1100-2600°K, Schott and Kinsey
(Ref. 1) had shown that the product of the induction time and
the initial oxygen concentration was linear when plotted against
reciprocal absolute temperature. Later research at Monsanto
Research Corporation (Ref. 2, 3) indicated that in hydrogen-
oxygen mixtures diluted by argon, the ignition induction times
became very long at temperatures below 1100°K. This is attributed
to self-inhibition of the reaction by formation of the species
HOZ’ which results in the breaking of the chain.

The measurements undertaken in this work were carried out in
the low-temperature region with undiluted hydrogen-air mixtures
} to furnish design criteria for future ramjet development. An
extension of the original program included research to identify
the effects of contaminants that may be found in different types
i of facilities on the ignition reaction of hydrogen-azir mixtures
in the low-temperature regime, and a preliminary investigation
of the ignition characteristics of gaseous hydrocarbon-air
s mixtures.
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The shock tube (Fig. la) employed for this study is of the
single-pulse type first described by Glick, Squire and Hertz-
berg (Ref. 4). The reaction and driver sections are made from
3-in. stainless steel pipe, the former being 12 ft. long and the

28 ft. The expansion tank is 3 ft. in dia-
Thin plastic diaphragms separate the sections,
are used throughout, so the sections can be

individually evacuated or pressurized.

For measuring the shock speed, SLM pressure transducers
spaced 4 ft. apart near the downstream end of the reaction section
are used. Two i1dertical trigger circuits amplify the transducer
signals, while thyratron elements with manual reset assure that
only one signal emits from each amplifier in an experiment. The
amplifier signals are used to start and stop a timer accurate

to one microsecond and also to start two oscilloscopes. One of
these (Fig. 1b) is used to trace a pressure record of the re-

) action. The other (Fig. lc) measures the output from a photo-
multiplier tube mounted 3 inches from the end of the reaction
section in front of a quartz window. The oscilloscope traces

were recorded by polaroid camera.

Gas mixtures to

be studied were'made up beforehand by pressure.

Burdette breathing air and AIRCO hydrogen were used without further
purification. Nitric oxide (Matheson Co., research grade) was used

for the NO additions
water vapor effect.

o< e s

PLATAM RN LI

£

s

,.,
A T AR % sty 000 e n
3

and ordinary tap water was used to study the
Hydrocarbon gases were Matheson research grade.

In a typical run, all sections of the shock tube were first
evacuated, and the sample and driver gases were added. Since
the "tailored-interface" technique (Ref. 3) was used to give a
heating oulse of uniform temperature, small amounts of nitrogen
were usually added to the helium driver gas to match it with
the sample and pressure ratio. The diaphragm was ruptured
manually by the plunger (h). The second diaphragm, the expansion
tank, the auxiliary shock tube (i) and the sampling valve (e)
were not required for these studies.
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IV. SHOCK TUBE CALCULATIONS
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For each experiment the shock speed, pressure record and
photo-cell record were obtained. This information was then
reduced with the aid of data from Monsanto Research Corporation's
Shock Tube Initial Calculation (STIC) computer program, which

: calculates the temperature and. pressure behind the reflected

S shock wave, using the known thermal functions of the mixture

1 components. This program assumes that the gases behave ideally

it and that no chemical reaction occurs ahead of the reflected
shock wave.

It was assumed that the reaction temperature and
pressure were actually realized immediately behind the re-

flected shock wave and that subsequent pressure changes caused
: changes in temperature given by the isentropic equation:

y=1/v

This is reasonable since small changes in pressure have negli-
r gible entropy changes. T versus time was plotted for each run,
and the arithmetic average temperature was taken as the temper-

ature of the run.

Usually this average temperature was within
50° of T3.

-

The data were processed via a polynomial curve fitting com-
puter program (PPLYFIT) by a standard least squares method.

The
transformation used was the log of induction times versus temp-
erature.
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V. HYDROGEN-AIR IGNITION CHARACTERISTICS
A. Experimental Results

Ignition induction times were measured for hydrogen-air
mixtures with equivalence ratios of 0.50, 0.75 and 1.00 at
pressures of 15, 30, 60, 100 and 130 psia in the temperature
range 800-1100°K. Calculations relating shock speed with the
temperature and pressure generated after the incident and re-
flected shock waves were performed by using an exlsting computer
program which was run on the IBM 7094 computer at Wright-Patterson
Air Force Base.

The temperature range over which induction times were measured
was determined by the characteristics of the shock tube. Induction
times shorter than 0.1 msec and longer than 12 msec could not be
determined accurately. Ignition was signaled by a sharp rise
in ultraviolet emission from the reacting gas, and by a nearly
simultaneous rise in pressure. The pressure rose to no more
than double its original value in most cases.

Results of the hydrogen-air investigation are shown in
Figures 2-4, in which the 1ln t is plotted versus the reciprocal
of absolute temperature. To minimize confusion only the least
squares 1ines are plotted. All experimental points are presented
in Tables 1-3.

B. Conclusions

The experimental scatter in the data, especially for the
stoichiometric mixture at higher pressures, was observed to be
much greater than that usually experienced in argon-diluted
mixtures and in the 0.5 equivalence ratio results. This was
caused by the occurrence of detonations rather than normal
combustion, and was evidenced by an extreme "sawtoothed" vari-
ation in the pressure record after ignition.

Despite this scatter in experimental data, they were submitted
for mathematical correlation on the IBM 7040 computer at the
Central Research Department of Monsanto Company at St. Louis,
Missouri. Both linear and nonlinear regression analyses were
run assuming an equation of the form:

- _Ae B /1
p* @

T
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where t 1s the induction time in milliseconds

T is the temperature in Kelvin degrees

p 1s the pressure in psia

. _ (Fuel/Air) actual
@ is the equivalence ratio = (Fuel/ALr) stolehiometric

and A, B and « are regression coefficienés.

The form of the equation was selected on the basils of experi-
ence in the variation of induction time with each of the variables
separately, and while it is not general it does contain the
dependent variables in a kinetically significant form. Considering
the degree of scatter in the stoichiometric mixture data, the
regression coefficients were determined with good precision. The

following equation resulted:

_ 2.32 x 1077 ¢13,950/7
» p(O.Ll) &
' The 95% confidence limits of the equation indicate that the

computed value of 1 may differ from a given experimental measure-
ment by a factor of L.

; The inclusion of an additive such as nitric oxide in the
; hydrogen-air system appears to exhibit a distinct, stabilizing
- effect on the reaction even though it sensitizes the ignition.

C. Discussion

Our observations agree admirably with the recent study of

{

é Voevodsky and Soloukhin (Ref. 5). In this work the transition
¢ from the "mild" ignition to the detonation wave is related to
{

the second explosion 1limit of the classical (Ref. 6), low-
temperature and pressure, explosion bulb investigations (Fig. 5).

This second 1limit results from a competition of branching
reactions such as:

t H+ 0, OH + 0

1 O +H,>OH+H

14
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and the breaking reaction:

H + O2 + M - HO2 + M *
As the temperature is decreased at constant pressure, the second
limit is crossed from an explosive to a non-explosive region.
Extrapolated to the shock tube situation this is excmplified by
changing from the detonation region, through a transition or
intermediate region located near the P-T area of the second limit
mixtures, and finally into an area of "normal" ignition.

While there exists a copious quantity of literature on the
mechanism and kinetics of the hydrogen-oxygen ignition reaction,
no directly related study could be found with which to compare
the experimental data reported here.

16
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VI. EFFECTS OF ADDITIVES ON HYDROGEN-AIR IGNITIONS

The first study requested after completion of the hydrogen-
alr ignition characteristic measurements was to determine the
influence of potential contaminants on the previously determined
ignition induction times. The contaminants selected would be
encountered in an experimental ramjet engine facility where the
source of hot combustion air would be either preburning (H 0
contaminant) or arc discharge (NO contaminant).

At the outset of this program it was recommended to the
sponsor that an effort be made to sensitize the low-temperature
ignition rates of hydrogen-air mixtures through the use of
chemical additives. Two candidate accelerators suggested at
that time were nitric oxide and nitrogen dioxide. This recom-
mendation was based primarily on the chemical sensitizers which
were found to be efficient in reducing the second explosion
limit of hydrogen-oxygen in static-bulb experiments (Ref. 6)

and on some earlier experience in sensitizing diborane-air
explosions (Ref. 7).

A. Water Vapor Additions

Ignition induction times were measured for 0.5 and 1.0
equivalence ratio hydrogen-air mixtures containing 10, 15 nad
20 mole percent of water vapor. All experiments were conducted
at a reflected shock wave pressure of 30 psia. The data are
summarized in Table 4 and the least squares plets are presented
in Figure 6. The water vapor exhibited a slight sensitizing
effect on the 0.5 equivalence ratio mixture over the entire
temperature range studied. At constant ignition induction time,
the ignition temperatures were rediced up to 60°K. The additive
showed a similar effect on the stoichiometric mixture at high
temperature, but the slope of the ignition curve was changed so

that in the low temperature region a slight inhibiting effect
resulted.

B, Nitric Oxide Experiments
The first experiments conducted employing nitric oxide
additive were at the 8 mole percent level in the 0.5 and 1.0

equivalence ratio mixtures at a pressure of 30 psia. The sensi-
tization on addition of the nitric oxide was marked in that the

17
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TABLE 4
SHOCK TUBE INDUCTVION TIMES FOR H,-AIR + H,0
Percent Equivalence Reaction Induction Temp Temp 1/T
Additive Ratio Pressure Time °R  °K °k x 103
(psia) (msec)

10 0.50 30 0.42 1720 955.6 1.0k464
1.6 1711 9%0.6 1.0519

0.65 1707 948.3 1.0545

2.1 1695 941.7 1.0619

1.4 1689 938.3 1.0657

0.90 1688 937.8 1.0663

2.6 1685 936.1 1.0682

5.4 1677 931.7 1.0733

6.0 1672 928.9 1.0765

6.8 1619 899.4 1.1118

10 1.0 30 0.24 1781 989.4 1.0107
0.74 1727 959.4 1.0423

0.90 1720 955.6 1.0464

1.7 1717 953.9 1.0483

2.1 1712 951.1 1.0514

0.54 1711 950.6 1.0519

4.8 1693 940.6 1.0631

6.8 1681 933.9 1.0707

0.70 1676 931.1 1.0739

1.6 1661 922.8 1.0836

L.y 1658 921.1 1.0856

6.8 1631 906.1 1.1036

10.8 1623 901.7 1.1090

15 0.50 30 0.24 1769 982.8 1.0175
0.42 1753 973.9 1.0268

0.58 1729 960.6 1.0410

0.82 1716 953.3 1.0490

0.80 1682 934.4 1.0702

1.35 1663 923.9 1.0824

1.8 1662 923.3 1.0831

1.0 1638 910.0 1.0989

7.2 1636 908.9 1.1002

6.8 1607 892.8 1.1200

6.0 1606 892.2 1.1208

h.8 1587 881.7 1.1342

9.0 1547 859.4 1.1636

14,6 1510 838.9 1.1920

15 1.0 30 0.10 1850 1027.8 0.9730
0.44 1788 993.3 1.0067

0.52 1775 986.1 1.0141

0.46 1750 972.2 1.0286

0.60 1741 967.2 1.0339

0.80 1725 958.3 1.0435

1.6 1692 940.0 1.0638

b,2 1691 939.4 1.0645

b.o 1663 923.9 1.0824

5.8 1630 905.6 1.1042

5.0 1608 893.3 1.1194

12.4 1602 890.0 1.1236

8.0 15388 882.2 1.1335

=
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TABLE 4 (cont'd)

: Percent Equivalence Reaction Induction Temp Temp 1/7
! Additive Ratio Pressure Time °R  °K °K x 103
oo (psia.) (msec )
{ 20 0.50 30 0.50 1748 971.1 1.0297
: 0.50 1727 959.4 1.0423
: 1.0 1722 956.7 1.0452
. 0.32 1717 953.9 1,0483
5 1.75 1678 932.2 1.0727
. 1.2 1640 911.1 1.0975
‘ 3.8 1639 910.6 1.0981
; 2.2 1627 903.9 1.1063
: 6.4 1615 897.2 1.1145
3 11.6 1595 886. 1.1285
: 14.8 1518 843.3 1.1858
E, 20 1.0 30 0.28 1792 995.6 1.0044
2 0.36 1770 983.3 1.0169
3 0.85 1754 974.4 1.0262
F' 1.2 1744 968. 1.0320
N 1.2 1739 966.1 1.0350
2 1.6 1735 963.9 1.0374
- 3.95 1713 951.7 1.0507
i 2.6 1706 947.8 1.0550
< 8.2 1696 942.2  1.0613
' 11.0 1678 932.2 1.0727
3 . 6.6 1671 928.3 1.0772
X 7.0 1648 915.6 1.0921
19
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ignition characteristic curve was displaced to lower temperatures
an¢ induction times with 1little change in slope. In the case

of vhe 8 mole percent mixture the ignition delays were shortened
by a factor of 5 and 10 for the 0.5 and 1.0 equivalence ratio
mixtures, respectively. At constant delay this was equivalent

to a decrease in ignition temperature of 70 and 100°K for the

two mixtures.

Past experience with nitrogen oxide sensitization of the
static hydrogen-~oxygen (Ref. 8, 9) and diborane-oxygen (Ref. T)
ignition reactions indicated that the degree of sensitization
could reach a maximum at a certain additive level with the
effect decreasing at both lower and higher concentrations.
Consequently a series of studies was conducted in which the
concentration level of NO added to the stoichiometric hydrogen-
air mixture was varled and ignition induction time-temperature
data were measured at a pressure of 30 psia. The following
concentrations were investigated: 0.1, 0.3, 0.5, 1.0, 5.0,
and 8.0 mole percent NO.

The data are entered in Table 5 and the ignition induction
times are plotted in Figure 7. The experimental scatter of the
data in this investigation was extremely small, indicating some
stabilization of the ignition reaction by tne aitric oxide. It
was observed that as the additive concentration was decreased
from 8.0 to 0.5 mole percent the ignition induction time-
temperature curve was displaced to shorter delay times and lower
temperatures with little significant change in slope. When the
additive concentration was decreased further to 0.3 and then 0.1
mole percent, the delay times again increased, but in these cases
the slope of the ignition curve was definitely decreased.

Two additional additives, nitrogen dioxide and ammonia, that
had been found to be effective in the static explosion studies,
were examined at the 0.5 mole percent level under the same con-
ditions. These measurements are summarized in Table 6 and the
resultant ignition data are plotted in Figure 8. Nitrogen dioxide
appeared to be as effective as nitric oxide in sensitizing the
ignition reaction, while ammonia exhibited no effect.

Figure 9 presents isothermal plots of the variation in 1ig-
nition induction time with nitric oxide concentration at temper-
atures of 800, 900 and 1000°K. In every case the minimum delay

21
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TABLE 6

SHOCK TUBE INDUCTION TIMES FOR H,-AIR + NO,, NHj3
EQUIVALENCE RATIO = 1.0

Additive Reaction Induction Temp Temp 1/T

Concentra- Pressure Time °R °K °K x 103

tion (psia) (msec)

0.5% NH, 30 0.80 1726 958.9 1.0429
30 2.0 1685 936.1 1.0683
30 11.4 1602 890.0 1.1236
30 4,2 1590 883.3 1.1321
30 14.6 1521 845.0 1.1834

0.5% NO, 30 0.24 1563 868.3 1.1517
30 0.50 1500 833.3 1.2000
30 1.08 1480 822.2 1.2162
30 1.30 1464 813.3 1.2296
30 2.2 1436 797.8 1.2534
30 5.2 1398 776.7 1.2875
30 6.8 1396 775.6 1.2893
30 7.2 1390 772.2 1.2950
30 12.4 1366 758.9 1.3177

23

UNCLASSIFIED




Es

TR e T

CEes

T N

o

Eo

SOANIXTH JTY-USFOJPAY PIZTITSUSS Off JO SOTASTId30BIRYD UOTITUBLI  * L 2an31d
X
01T 02°1T e0T X o &/T 01T 00°1T
I I ] | I I | { | | I J ] | |
S -
B ? H i ()
B -
€0
H
- 9
K -0 &
a : 5
e a — o
T 5 L0 &
- 0 d =1
TH - v - 5
W =
w a
o
< )
L -3
B —peg
&) 3
N w
3
w
- &
o

B — o0
B — o2
BTsd 0F ON + JTY-%H
B ' -1 o1
)
ao
| l i 1 i | | | 1 1 | | ] | |

Wm &w&m&ﬁ?ﬁﬁw%%f s

L

o s RPN ST 2T GNSUPR RIS Like b on

24

UNCLASSIFIED

AN S s b AR




repueT P R

20

B L S g

Ignition Induction Time, msec

0.3

.2

PR S SR Pavs s i o

s

s
I

i
[

»u e e o

o

ST NN AP £ st RRIT

B endt W

UNCLASSIFIED

Reaction Press =

30 Psia

o O H,-Air E.R. - 1.0 —

A Q Ha-A.r + 0.52 NO ER 1.0

- AN Ho-Air + 0.5% NO ER 1.0]

O H2-Air + 0.5% NO ER 1.0

S R VR NN T NN AU MU N NN N N
1.00 1.05 1.10 1.15 1.20 1.25 1.30 1.35
1/T °K x 103
Figure 8. Ignition Characteristics of Hydrogen-Air Mixtures

With Various Additives
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occurs near 0.5 mole percent additive, with the induction time
increasing to a relatively constant value above 1 mole percent.

Table 7 1s a tabular summary of all the additive work. The
constants A and B are those derived from the data, assuming that
the induction time can be expressed as:

log v = A+ B/T

while AH gives the "apparent activation energy" for ignition
in Kcal/mole. The last column illustrates the ignition temper-
atures for a constant delay time of 1 millisecond.

It should be stated at this point that since the gaseous
mixtures investigated here were all premixed and stored before
shock tube experiments were conducted, both NO and NO2 are in

equilibrium with the oxygen in air at the time of the experiment
regardless of the oxide additive. At one point we became con-
cerned as to the fate of the small amount of additive in the
steel mixture tanks over long term storage. Qualitative infra-
red adsorption and mass spectrometer studies indicated no
significant changes in the mixture over storage times longer
than those experienced in these studies.

C. Conclusionz

The first evidence of ignition sensitization of hydrogen-
oxygen mixtures by nitrogen oxides was observed by H. B. Dixon
in 1928. This initiated a long series of research by various
investigators. The most recent work is that of Ashmore and
co-workers (Ref. 8, 9). This represents the first time that
this effect has been shown to occur in the short observation
times inherent in shock tube investigations. While the mechanism
of the reaction is not fully understood, the original concept
that nitrogen ozides were effective by simply increasing the
number of branched chains by acting as a low-temperature source
of chain propagating species, has not been supported. Most
recently Ashmore and Levitt (Ref. 9) have suggested that the
sensitization effect could result from the reaction of nitric
oxide with the chain-terminating species HO2 in either of the
following reactions:
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TABLE 7

IGNITION CHARACTERISTICS
OF
HYDROGEN-AIR-ADDITIVE MIXTURES

A B AH T °K @
K cal ti, 1 msec
- 8.374 8,130 37.2 971
- 6.817 5,990 27.4 878
-~ 6.984 5,780 26.5 827
-12.656 10,280 47.1 812
-10.688 8,930 40.9 835
- 8.859 7,670 35.1 865
- 9.323 8,070 36.9 865
-13.150 10,810 k9.5 822
- 8.760 8,440 38.6 963

- B/
log t; = A+ 7'T
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' HO2 + NO ~» NO2 + OH

HO2 + NO ~» HNO2 + 0
In both cases the NO effectively removes a chain-breaking species
from the reaction mixture and generates a chain-propagating
species (OH or 0).

The experimental data indicate that NO might have a slightly
greater sensitizing effect than NOZ‘ This might be expected

since, in the early portion of the mechanism, NO, reacts with the

0 atom to form nitric oxide and oxygen: C

NO, + O » NO + O

2 2
! This is tantamount to a competition for oxygen atoms which could
3 delay the branching reaction:
0 + H2 - OH + H

In addition, it appears that NO2 must be converted to NO in
order for the disruption of the chain-breaking steps to occur.

Pl L e e a i
R Y

It is not surprising that amrmonia was found to be ineffective
under the shock tube conditions, since time is not available for
its conversion to NO. The same would most probably be true for
cyanogen, but this must be verified by experiment.

b i 4

In recent studies of the hydrazine-nitrogen tetroxide reaction
mechanism, Prof. Irvin Glassman and his associates (Ref. 10) have
studied the kinetics of the reaction between hydrogen and oxygen
in the presence of nitric oxide. The reaction rate is followed
at atmospheric pressure unuer flow conditions in a 2 to 4 inch
diameter, one meter long, tube. The reactants are under nitrogen
dilution and enter the tube reactor at temperatures between 600
and 1100°K at a flow rate of about 50 feet/second. A series of
temperature measurements along the axis of the reactor yield a
temperature gradient which can be converted to a reaction rate
from which reaction rate constants and activation energles are
calculated. The results indicate that nitric oxide catalyzes the
hydrogen-oxygen reaction. A maximum sensitization occurs at a
given NO concentration. At sufficiently high concentrations, the

R
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nitric oxide is found to inhibit. The results, independently

arrived at employing a completely different experimental technique,
confirm our shock tube observations.

A pertinent summary of the essence of the hydrogen ignition

characteristic studies reported here is shown in Figure 10.
Curve A represents the behavior found by Schott and Kinsey (Ref. 1)
in the higher temperature range of 1100-2600°K. The mixture
employed was stoichiometric hydrogen-oxygen under high argon
dilution. Curve B represents the low-temperature extension of

. this curve for ignitions in the temperature range 900-1100°K,
as predicted by Skinner and Ringrose (Ref. 2), illustrating the
self-inhibiting nature of the HO2 species in the temperature

range where it is sufficiently stable to enter the mechanism.
Curve C presents the behavior found in this work for undiluted
stoichiometric hydrogen-air mixtures, while Curve D illustrates
the sensitizing effect exhibited by 0.5 mole percent nitric
oxlide on the ignition reaction. The resultant decrease in in-
duction time at constant temperature is about 100 times or 2
orders of magnitude, while at constant induction time the 1ig-
nition temperature is decreased by about 200°C.

30
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ﬂ ? VII. HYDROCARBON GAS-AIR IGNITION CHARACTERISTICS
. A. Experimental Results .
Y
4 % A preliminary examination of the ignition induction character-
] istics of hydrocarbon-air mixtures was undertaken as a logical
. extension of the hydrogen research. The objective of this work
; was to furnish chemical reaction induction times as design criteria
3 ? to test the feasibility of hydrocarbons as fuels in supersonic
e combustion applications.

This study included measurements on three hydrocarbon-air
systems: methane, butane and octane. The ignition induction
time-temperature charaqcteristics were determined for 0.5 and
1.0 equivalence ratio mixtures at a reflected shock wave pressure
E of 60 psia. The methane-air data are presented in Table 8 and
are plotted in Figure 11. The temperature range studied was 1250
to 1500°X for ignition delays from 0.2 to 8.0 milliseconds. The
butane-air data are presented in Table 9 and plotted in Figure 12.
The temperature range in this case was 1070 to 1270°K. Included
in this group was a series of measurements to test the effects of
_ 0.3 mole percent added hydrogen on the stoichiometric butane-air
2 ignitions. It is evident that no sensitization of the ignition
¢ reaction resulted from hydrogen addition. The octane~air data
are presented in Table 10 and plotted in Figure 13. The tempera-
ture range of the data was 1030 to 1250°K.

e G g et

~ter

The experimental measurements were highly reproducible and
exhibited little scatter compared to the unsensitized hydrogen-
air determinations. The general behavior of a decrease in
ignition temperature as one progresses along the homologous

9 series of n-paraffins to higher molecular weight is observed

3 here. An interesting result which will require clarification
"3 is exhibited in the methane-air system where the ignition in-

] duction times for the 0.5 equivalence ratio appear to be shorter

than those for the stoichiometric mixture. The usual observation
is that the induction time-mixture ratio curve will exhibit a
minimum near the point corresponding to the stoichiometric
mixture.

G RN i
PRI SEL AL A diobd

B. Discussion

A survey of the literature on hydrocarbon-air ignition in-
duction time measurements indicated that the majority of the

- 32
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P TABLE 8
§ SHCCK TUBE INDUCTION TIMES FOR CH,~AIR
2 . Equivalence Reaction Induction Temp Temp 1/T
i Ratio Pressure Time °R °K °K x 103
! (psia) (msec )
0.50 60 0.26 2674 1485.6 0.6731
0.24 2652 1473.3 0.6787
0.36 2637 1465.0 0.6825
0.33 2632 1h462.2  0.6839
0.38 2611 1450.6 0.6893
0.50 2577 1431.7 0.6984
0.70 2549 1416.1 0.7061
0.78 2534 1407.8  0.7103
0.88 2523 1401.7 0.7134
1.35 2458 1365.6 0.7322
1.55 2458 1365.6 0.7322
1.55 2452 1362.2 0.7341
2.40 2351 1306.1 0.7656
4 b.05 2296 1275.6 0.7839
X 7.20 2260 1255.6 0.7964
3 1.0 60 0.36 2644 1468.9  0.6807
: 0.41 2639 1466.1 0.6820
¥ 0.42 2639 1466.1 0.6820
i 0.40 2620 1455.6  0.6870
: : 0.90 2561 1422.8 0.7028
0.95 2544  1413.3 0.7075
1.0 2541 1411.7 0.7083
: 0.80 2535 1408.3  0.7100
: 1.35 2529 1405.0 0.7117
; 1.65 2498 1387.8 0.7205
1.83 2475 1375.0 0.7272
o 1.70 2465 1369.4 0.7302
! 4.8 2465 1369.4 0.7302
; 2.8 2439 1355.0 0.7380
7.2 2424 1346.7  0.7425
5.0 2383 1323.9 0.7554
6.6 2350 1305.6 0.7659
33
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) g TABLE 9
i § SHOCK TUBE INDUCTION TIMES FOR C,H,q-AIR ot
§ Equivalence Percent Reaction Induction Temp Temp 1/T .
: Ratio Additive  Pressure Time °R oK °K x 103
(psia) (msec)
0.50 None 60 0.18 2281 1267.2 0.7891
016 2276 1264.4 0.7908
0.36 2213 1229.4 0.8134
0.42 2201 1222.8 0.8178
0.54 2147 1192.8 0.8383
0.64 2140 1188.9 0.8411
0.78 2110 1172.2 0.8530
1.20 2091 1161.7 0.8608
1.65 2057 1142.8 0.8750
2.5 2028 1126.7 0.8875
3.6 1990 1105.6 0.9044
5.2 1966 1092.2 0.9004
1.0 None 60 0.24 2254 1252.2 0.7985
0.30 2213 1229.4 0.8134
0.50 2206 1225.6 0.8159
0.78 2144 1191.1 0.8395
0.88 2115 1175.0 0.8510
1.2 2091 1151.7 0.8608
2.0 2047 1137.2 0.8793 .
3.2 2027 1126.1 0.8880
3.4 1986 1103.3 0.9063
b1 1981 1100.6 0.9085
5.2 1975 1097.2 0.9114
6.4 1970 1094.4 0.9137
1.0 .3 (Hy) 60 0.28 2241 1245.0 0.8032
0.30 2229 1238.3 0.8075
0.4y 2206 1225.6 .0.8159
3 0.52 2198 1221.1 0.8189
s 0.73 2168 1204.4 0.8302
& 1.15 2112 1173.3% 0.8522
& 1.55 2089 1160.6 0.8616
3 3.0 2041 1133.9 0.8819
3 3.15 2019 1121.7 0.8915
3 3.13 1995 1108.3 0.9022
3 b1 1968 1093.3 0.9146
8.0 1966 1092.2 0.9155
8.6 1934 1074.4 0.9307
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TABLE 10

. .‘,. ! s
g RTINS B R R ety

SHOCK TUBE INDUCTION TIMES FOR OCTANE-AIR

Equivalence Reaction Induction Temp Temp 1/T
Ratio Pressure Time °R oK °K x 103
(psia) (msec)
0.50 60 0.20 2252 1251 0.7992
0.12 2225 1236 0.8089
0.40 2171 1206 0.8291
¢ 0.60 2129 1183 0.8u454
3 0.70 2104 1169 0.8555
{ 0.88 2077 1154 0.8666
1.40 2045 1136 0.8802
: 4,20 1957 1087 0.9197
. 3.90 1937 1076 0.9292
4.90 1921 1067 0.9370
5 1.0 60 0.20 2128 1182 0.8458
0.24 2086 1159 0.8628
0.48 2065 1147 0.8716
N 0.63 2063 1146 0.8725
£F 0.82 2054 1141 0.8763
! 0.95 2009 1116 0.8959
¢ 2.2 2007 1115 0.8968
3.4 1921 1067 0.9370
4,35 1874 1041 0.9605
. 6.80 1861 1034 0.9672
E:
k|
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Figure 11. Methane-Air Ignition Characteristics
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research can be divided into three general groups: (1) that

of Wilhelm Jost and co-workers (Terao, Marginengo, Wagner,

Just) from the Institute of Physical Chemistry at the University
of Gdttingen, (2) the Russian work of Borisov, Kogarko, Voevodsky
and Soloukhin, and (3) the work of Mullins at the National Gas
Turbine Establishment in England.

The German work is reported from experiments on both adiabatic
compression and shock tube apparatuses. The adiabatic compression
apparatus is described in Ref. 11, 12. The data are not directly
comparable to shock wave ignition induction times, but have been
interpreted by Terao (Ref. 13, 14) and compared with his shock
tube results on methane, ethane, ethylene and hexane mixtures
in aiv. Tre adiabatic compression studles included work on
hexane, hcptane, octane and decane. The shock tube data cover
induction times from .01 to 1.0 msec., while the adiabatic com-
pression data cover the range from 2 to 100 msec. Unfortunately
all these data are obtained under conditions where two-stage
ignition (low-temperacure ignition) of the hydrocarbon occurs.
Combining the results of all hydrocarbons investigated from Cl

to ClO’ the ignition temperaturz range reported for delay times

from 0.01 to 20 msec is from 550 to 1000°K. An illustration of
the discrepancies between the work reported here and that re-
ported by Terao would be that for stoichiometric methane-air,

the ignition delays differ by a factor of 104 and ignition
temperature by 700°K. Comparing our data on stoichiometric
ocvane with those of Martinengo, the ignition delays differ by

a factor of 103 and the temperatures by 400°K.

The si:ock tube ignition data of Kogarko and Borisov (Ref. 15),
rost recently corrected by the same workers (Ref. 16), are com-
pared with our data in Figure 14 for a number of stoichiometric
hydrocarbon-air mixtures. While the agreement illustrated here
appears to be ve:y good, it was not expected. The Russian work
is carried out in a three-s=ctioned tube {(driver, buffer and
sample). The ignition lin's are determined by setting a constant
sample pressure and varying ignition temperature by increasing
the driver pressure. The pressure on ignition along a given line
is therefore variable. The majority of the data illustrated here
were obtained with an initial sample pressure of 1 atmosphere,
resulting in the reflected wave pressure varying from 50 atmos-
pheres at 1100°K to 90 atmospheres at 1500°K (this corresponds
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to the range of the benzene data). Therefore, to better compare
the data, the pressure dependsnce of ignition delay would have
to be determined, since the Russian work is at pressures about
20 times in excess of those employed in our investigations.

The ignition delay measurements of B. P. Mullins (Ref. 17,
18) were made employing the N.G.T.E. (National Gas Turbine
Establishment, U. K.) flow method. The apparatus 1is a standard
3° diffuser spontaneous ignition rig which is fed with electrically
heated air. Downstream from the point of fuel injection, seven
fused silica windows permit observation of the flame fro~t location
from which ignition delay times can be calculated. M. 1' .8
measured the ignition delays and the activation energies ror a
wide range of organic materials. His data on methane and ethane

are included in Figure 14 and are seen to agree admirably with
the shock tube results.

Hawthorn and Nixon (Ref. 19) have reported ignition delay
times for argon-diluted propane-oxygen mixtures. One curve,
that for 0.67 equivalence ratio propane-oxygen in 99% argon
at 15 psia, is presented in Figure 14. From the data presented
one would expect that as the argon dilution is decreased the
ignition curve would move toward lower temperatures and shorter
delays, and more closely approach the butane-air curve reported
in this work. The agreement in this case is again very good.
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Figure 14  Ignition characteristics of stoichiometric
nydrocarbon-air mixtures.
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VIII. RECOMMENDATIONS

X The application of endothermic hydrocarbon fuels for cooling .
: of advanced aircraft engines will of necessity require com-
patible supersonic combustion properties of the resultant hydro-
carbon product mixture. Figure 14 illustrates the paucity of
applicable hydrocarbon-air ignition induction data that exists

in the literature. A great deal remains to be done in defining
the pressure, temperature and composition dependence of ig-
nition delay times even for the pure hydrocarbons, not to mention
the ignition characteristics of the alkenes and alkynes that will
result from pyrolysis and dehydrogenation of the original endo-
thermic fuel. The same is true, of course, for model product
distributions from these reactions.

It is recommended that the present work be continued so that
design criteria will be furnished on the ignition characteristics
of the hydrcarbon fuels at composition, pressure and temperature
conditions anticipated in the advanced aircraft engines. At a
later time, it may be of interest to conduct a research program
with the objective to identify chemical additives to sensitize
1 the ignition reactions of these hydrocarbon species.
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October 26, 1965

Errata on "“Shock Tube Studies of Fuel-Air Igrition
Characteristics"

Recipients of Techaical Report AFAPL-TR-6593

Sirs:

Technical Report AFAPL-TR-6593 "Shock Tube Studies
of Fuel-Air Ignition Characteristics" was issued with
errors in the legend of Figure 8, Page 25.

The correct legend should read:

O H -air E.R. -1.0

<> H -Air + 0,534 NH E.R. 1.0
ANH -Ar + 0.5 N0 E.R. 1.0
OH -Air + 0.54 NO E.R. 1.0

A revised Figure will not be issued.

4
A, D.Snyder
Group Leader,
Physical Chemlstry
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Errata on "Shock Tube Studies of Fuel-Air Ignition
Characteristics”

Recipients of Technical Report AFAPL-TR-6593

Sirs:

Technical Report AFAPL-TR-6593 "Shock Tube Studies
of Fuel-Air Ignition Characteristics" was issued with
errors in the legend of Figure 8, Page 25.

The correct legend should read:

QO H -Air E.R. -1.0

<> H -Air + 0.3% NH E.R., 1.0
AH -Air + 0.5% N0 E.R. 1.0
OH -Air + 0.5% N0 E.R. 1.0

A revised Figure will not be issued.

ABdugrter

A, D.Snyder
Group Leader,
Physical Chemistry
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